Modelo de regresión lineal múltiple Las variables biológicas suelen presentar multicorrelaciones. P.e. para estudiar el efecto del consumo de grasas saturadas en el nivel del colesterol en sangre, se puede plantear un modelo de RLS, sin embargo el nivel de colesterol puede depender también de otras variables: consumo de otras substancias, ejercicio realizado, edad, factores metabólicos genéticos, etc. Si, para cada valor del consumo de grasas, las demás variables se distribuyen aleatoriamente, la estimación por RLS es adecuada y la variación "debida" a las otras variables estaría incluida en la variación aleatoria alrededor de la regresión, pero en caso contrario la estimación sería incorrecta, si p.e., las costumbres dietéticas variaran con la edad y ésta influyera en el colesterol, una parte no cuantificada de la variación del colesterol que el modelo atribuye al consumo de grasas sería "debida" a la edad. La regresión lineal múltiple (RLM) es un modelo que permite estudiar estos efectos. El modelo es ![]() a0:
media de Y cuando todas las Xi son cero (cuando
no tiene sentido Xi=0, p.e. edad, se interpreta como
la media de Y que no depende de las Xi). Las asunciones del modelo son una generalización de las de RLS y dado el resultado de RLS no vamos a distinguir entre modelo I y II. La estimación de los coeficientes también se hace por mínimos cuadrados o máxima verosimilitud y se obtienen los mismos resultados. Estos resultados, usando notación matricial, son (incluyen como caso particular la RLS): ![]() siendo
![]() es decir la matriz de datos con una primera columna de 1's. Estos coeficientes se distribuyen como una normal multivariante cuya matriz de medias son los verdaderos coeficientes y matriz de varianzas-covarianzas ![]() un buen estimador de s2 es ![]() que se distribuye como una c2 con n - (k+1) grados de libertad. Estas fórmulas ponen de manifiesto unas limitaciones al resolver estos modelos. Para ello hay que invertir una matriz y no todas las matrices pueden invertirse (singulares). En dos situaciones no se puede:
|